Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2023-01-01 - 2024-11-30

The objective of the project is to evaluate the fatigue strength in the very high cycles regime for carburised and pseudo-carburised gear steel using fracture mechanics principles. Fatigue tests will be carried out using the ultrasonic fatigue testing technique at different load ratios. The fatigue strength (S-N curves) as well as the threshold stress intensity factor ranges for long cracks will be determined with tests up to ten billion load cycles.
Research project (§ 26 & § 27)
Duration : 2022-07-01 - 2029-06-30

In recent years, molecular informatics has transformed from a niche discipline into a driving force of the research and development of functional small molecules such as drugs and agrochemicals. Advanced algorithms as well as powerful computer hardware are now opening unprecedented opportunities for the targeted design of safe and efficacious small molecules. However, the full potential of computational methods in the biosciences is by far not exploited yet. One of the main reasons for this situation is the fact that the most powerful technologies in molecular informatics, machine learning and simulations in particular, depend on the availability of substantial amounts of high-quality data for development and validation. Despite recently launched initiatives to boost collaborative research and learning, the vast majority of high-quality chemical, biological and structural data remain behind corporate firewalls, inaccessible for research by experts in academia. This initiative for the Christian Doppler Laboratory for Molecular Informatics in the Biosciences seeks to push the frontiers of machine learning and molecular dynamics simulations technologies for the prediction of small-molecule bioactivity by supporting three expert academic research groups of the University of Vienna and the University of Natural Resources and Life Sciences (BOKU) with big data on the chemical and biological properties of small molecules, and with significant capacities for experimental testing and method validation. The unique synergy that will be generated by this consortium stems from two important factors: First, the two industry partners of this consortium have strong interest in cheminformatics but their business areas are non-competing. Second, and from a scientific point highly important, these industry partners focus on distinct chemical spaces, opening a unique opportunity for academics to boost the capacity and applicability of in silico methods with uniquely diverse, high-quality data.
Research project (§ 26 & § 27)
Duration : 2023-11-01 - 2025-10-31

We have reached a point where we have to use recycled wood, which is mostly contaminated, to a greater extent because there is a shortage of raw wood in the EU. At the same time, in pulp mills, we produce large amounts of lignin, however, use it mainly for energy purposes. LignoMBB is bringing technology for the production of mycelium-based biocomposites (MBB), during which recycled wood is decontaminated. Secondly, LignoMBB is using lignin, which is currently mainly used for energy and is understood as a by- or waste product, in order to achieve better mycelial growth on the developed substrate. I am the first to suggest enriching the substrate for the production of MBB with lignin, expecting that the addition of lignin will result in better mechanical properties of the MBB. LignoMBB develops materials only from recycled wood and lignin, i.e. it does not use agricultural residues, as is currently common practice, and does not endanger food security. At the same time, it finds application for large volumes of old contaminated wood, which is currently entering circulation. My first objective is to develop a technology for the material use of lignin and a substitution technology of agricultural residues in MBBs with lignin and recycled wood. Then, I will answer the questions: To which extent additional lignin in MBB is consumed by fungi? What are the limits of substrate enrichment by lignin? In accordance with the second objective, I will develop a novel MBB to be used in structural applications. At different stages of the MBB cycle, I will measure the VOC emissions because I am hypothesizing that the production process of MBB can act as bioremediation and decreases VOC emissions from materials. LignoMBB will be implemented at BOKU in Bio-Resources & Technologies Tulln group, where the emphasis is placed on cradle-to-cradle design and brings to this group methods of recycled wood decontamination and production of fully degradable MBB.

Supervised Theses and Dissertations