Neueste SCI Publikationen

Neueste Projekte

Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2022-06-01 - 2025-05-31

Die sensorische Qualität von Wein ist das Ergebnis einer Vielzahl von Wechselwirkungen zwischen allen im Wein enthaltenen chemischen Komponenten und spezifischen Umweltfaktoren, wie der Temperatur oder des Weins. Da die Weinqualität von zahlreichen Faktoren wie Sorte, Anbaubedingungen, Klimaveränderungen, Hefestämmen, Weinbereitungstechnologien und menschlichen Erfahrungen beeinflusst wird, ist die Bewertung der Weinqualität und deren Erhaltung – in Sinne der Reproduzierbarkeit von Jahr zu Jahr - heutzutage die größte Herausforderung sowohl für die Weinerzeuger als auch für die Weinwissenschaft. Weinbaupraktiken zielen in erster Linie darauf ab, qualitativ hochwertige Trauben zu erzeugen, die den Geschmack und die Aromen der Rebsorten und/oder die für eine bestimmte Region oder ein bestimmtes Terroir typischen Eigenschaften widerspiegeln. In Österreich ist der Districtus Austriae Controllatus (DAC) eine Klassifizierung für regionaltypische Qualitätsweine, die auf dem Weinmarkt für besondere Produkte sorgt. Eine genaue Bewertung und Beurteilung der Weinqualität, Identität und Typizität ist für Winzer von großer Bedeutung, um eine korrekte Weinklassifizierung und ein gezieltes Marketing durchzuführen. Ziel dieses Projekts ist die Bewertung der Trauben- und Weinqualität sowie die Charakterisierung und Vorhersage der regionaltypischen Qualität mit Hilfe von Element- und sensorischen Analysen, ungezielten und zielgerichteten metabolomischen und spektroskopischen Ansätzen sowie künstlicher Intelligenz. Die Traubenqualität ist der wichtigste Faktor für die Herstellung von Qualitätswein, und bei einige in Weintrauben enthaltenen Metaboliten kann ein enger Zusammenhang mit der Weinqualität bestehen. Dieser Zusammenhang zwischen den Traubenmetaboliten und der Weinqualität wird mit Hilfe von ungezielten Metabolomik- und Spektroskopieansätzen und mit Hilfe von Modellen zur Vorhersage der Weinqualität, die mit Hilfe von künstlicher Intelligenz und Algorithmen des maschinellen Lernens erstellt werden, untersucht werden. Ein besonderer Schwerpunkt dieses Projekts ist eine detaillierte chemische Charakterisierung, die den Einfluss der Wiener Weinbauregion (Herkunft) auf den Wiener Gemischten Satz DAC und den Grünen Veltliner klären soll. Als Ergebnis des Projekts werden Software, Apps und ein einzigartiges Qualitätskennzeichen für die Vorhersage der Weinqualität und die Bewertung der Authentizität auf der Grundlage von im Projekt etablierten Datenbanken entwickelt. Diese Lösung wird so konzipiert, dass sie die Identität und Authentizität jeder einzelnen Flasche belegen und zurückverfolgen kann. Die Ergebnisse dieses Projekts zielen wiederum darauf ab, sowohl das Herkunftsmarketing als auch die künftige Erhaltung der Weinproduktionsprozesse und der Qualität von in Wien hergestellten Weinen zu unterstützen.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2024-04-15 - 2027-04-14

Das Immunsystem verfügt über die Fähigkeit, zwischen „selbst“ und „fremd“ zu unterscheiden, was für den Schutz vor Infektionen von grundlegender Bedeutung ist. Auf molekularer Ebene geschieht dies durch spezifische Rezeptoren eukaryotischer Zellen, die charakteristische Fremdmoleküle von Mikroorganismen erkennen. Ein solches Molekül ist das Lipopolysaccharid (LPS), das in der Zellwand von Gram-negativen Bakterien vorkommt und eine Schlüsselrolle bei der Wirt-Pathogen Interaktion spielt. Spezifische Proteinrezeptoren des angeborenen Immunsystems, die LPS erkennen, können entzündliche Abwehrreaktion gegen Infektionen auslösen und die Immunhomöostase unterstützen. Bakterielle Pathogene verfügen über eine Vielzahl von Mechanismen, um ihre Zellwand als Reaktion auf die Übertragung zwischen Umwelt, Vektor und menschlichem Wirt anzupassen, indem sie die Zusammensetzung des LPS verändern und so die Immunantwort der eukaryotischen Zelle beeinflussen. Die Modifikation der Phosphatgruppen der immunstimulierenden Komponente des LPS, einem Glykolipid Lipid A, schützt die Bakterien vor der Erkennung durch kationische antimikrobielle Peptide des Wirts. Die Auswirkungen dieser Modifikationen auf die LPS-Erkennungsrezeptoren des angeborenen Immunsystems sind jedoch weitgehend unbekannt. Von besonderer Bedeutung sind die Effekte von Phosphatgruppenmodifikationen auf intrazelluläre LPS-spezifische Rezeptoren, die an der antitumoralen Immunität beteiligt sind. Aufgrund der großen Heterogenität bakterieller Glykane sowie der Instabilität modifizierter Phosphatgruppen können strukturell definierte intakte LPS-Fragmente nicht direkt aus bakteriellen Quellen isoliert werden. Die chemische Synthese stellt jedoch eine zuverlässige Methode dar, komplexe immunmodulatorische LPS-Moleküle aus kleinen Bausteinen zusammenzusetzen. Die Kohlenhydratchemie, oder Glykochemie, bietet vielseitige Werkzeuge zur Synthese komplexer Glykane, wodurch strukturell definierte und homogene Moleküle von hoher Reinheit für biologische Untersuchungen erhalten werden können. Im Rahmen des Projektes werden neue synthetische Ansätze zum Aufbau komplexer phosphorylierter Glykane entwickelt und eine Reihe von bakteriellen LPS- und Lipid A-Molekülen mit modifizierten Phosphatgruppen hergestellt. In Zusammenarbeit mit internationalen Forschungsgruppen auf dem Gebiet der Immunologie und der Strukturbiologie wird die immunbiologische Aktivität und Interaktion unserer synthetischen phosphorylierten Glykolipide und LPS-Moleküle mit entsprechenden Proteinen untersucht. Durch die Entwicklung einer Sammlung synthetischer Varianten bakterieller Lipid A- und LPS-Moleküle mit einzigartig modifizierten Phosphatgruppen zielen unsere Forschungsarbeiten darauf ab, die strukturelle Basis ihrer Interaktion mit Immunrezeptoren aufzuklären und die molekularen Grundlagen der antitumoralen und antibakteriellen LPS-induzierten Immunität zu erforschen.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2024-01-01 - 2027-12-31

Breiterer Forschungskontext: Von den fünf menschlichen Hämperoxidasen, deren Entwicklung sehr unterschiedliche Funktionen erfüllt, ist die Schilddrüsenperoxidase (TPO) die am wenigsten gut untersuchte. Das Multidomänen-Membranprotein katalysiert die Biosynthese von Schilddrüsenhormonen, die für Stoffwechsel, Wachstum und Entwicklung des menschlichen Körpers unerlässlich sind. Durch den Einsatz von Wasserstoffperoxid katalysiert TPO die Jodierung und Kopplung von Tyrosinresten auf der Oberfläche von Thyreoglobulin (TG) in der Schilddrüse. Allerdings gibt es offene Fragen zur Substratselektivität, den biochemischen Eigenschaften, dem Kopplungsmechanismus und den Rollen der einzelnen Domänen. Entscheidend ist, dass TPO der Kern zweier autoimmuner Schilddrüsenerkrankungen ist, an denen zusammen fast 150 Millionen Menschen leiden. Die einzigen beiden klinisch zugelassenen TPO-Hemmer sind jedoch nicht spezifisch. Ziele: Dieses Projekt wird die biochemischen und strukturellen Eigenschaften von TPO aufklären. Die Hauptziele sind (I) das Verständnis der Kinetik und Substratspezifität von TPO, (II) die Bereitstellung von Strukturdaten von TPO allein und relevanten Ligationszuständen und (III) die Klärung der Wirkungsweise von TPO-Inhibitoren. Ansatz: In Vorarbeiten wurde ein Expressions- und Reinigungsprotokoll für verkürzte TPO-Varianten erstellt. Wichtig ist, dass festgestellt wurde, dass es möglich ist, den Häm-Cofaktor auch nach der Reinigung wiederherzustellen und zu verknüpfen, wodurch hochreines und enzymatisch aktives rekombinantes TPO entsteht. Dies ermöglicht die erste detaillierte spektroskopische, thermodynamische und strukturelle Untersuchung des Enzyms. Dazu gehört eine Analyse der Reaktionskinetik von TPO mit einer Reihe von Methoden, einschließlich Stopped-Flow-UV-Vis-Spektroskopie für prästationäre Kinetiken, Analyse der Wechselwirkung mit kleinen Molekülen (z. B. Inhibitoren, Liganden) und TG mit Thermodynamik und Masse spektroskopische Untersuchungen. Schließlich zielt dieses Projekt darauf ab, die Röntgenkristallstruktur von TPO allein und im Komplex mit biologisch relevanten Substraten, Liganden und Inhibitoren aufzuklären. Maß an Originalität: TPO ist entscheidend für die Biosynthese von Schilddrüsenhormonen. Bisher sind jedoch nur wenige biochemische und strukturelle Daten verfügbar, die (I) keine klare Erklärung der Struktur-Funktions-Beziehung der Architektur des aktiven Zentrums und der TPO-Reaktivität, (II) der Rolle der zusätzlichen TPO-Domänen und (III) ermöglichen ) das Design neuer, spezifischerer Inhibitoren. Ziel dieses Projekts ist es, eine vollständige enzymatische und strukturelle Charakterisierung von TPO bereitzustellen, um diese Probleme anzugehen. Beteiligte Primärforscher: Vera Pfanzagl schloss 2019 das internationale PhD-Programm BioToP an der BOKU ab. Sie arbeitete hauptsächlich an Struktur-Funktions-Beziehungen von Häm-Enzymen und konzentrierte sich während ihres Postdocs auf menschliche Häm-Peroxidasen. Im Rahmen dieses Stipendiums strebt sie die Habilitation an, um ihre akademische Karriere voranzutreiben. Unterstützt und gecoacht wird sie von Kristina Djinovic-Carugo, einer anerkannten Expertin für Strukturbiologie und Leiterin des EMBLE Grenoble, und Chris Oostenbrink (Professor an der BOKU), einem Experten für molekulare Modellierung und Simulation.

Betreute Hochschulschriften